

 Comprehensive Creative Technologies Project:

Procedural Generation of Virtual

Cityscapes Using WaveFunctionCollapse

Algorithm

Alexander Hillman
Alexander3.Hillman@live.uwe.ac.uk
Supervisor: Bethany Mackey

Department of Computer Science and Creative Technology

University of the West of England

Coldharbour Lane

Bristol BS16 1QY

mailto:my.email@live.uwe.ac.uk
mailto:my.email@live.uwe.ac.uk

2021/22

2

Alexander Hillman 19021645

Abstract ... 3

Biography ... 3

1. Introduction ... 3

2. Literature review ... 4

2.1 L-systems .. 4

2.2 Voronoi Diagrams ... 4

2.3 WaveFunctionCollapse (WFC) ... 5

3. Research questions .. 6

4. Research methods .. 6

5. Ethical and professional principles ... 7

6. Research findings ... 7

7. Practice ... 8

7.1 Editor Component ... 8

7.1.1 Tile set ... 9

7.1.2 Tile connections ... 9

7.2 Executable Component ...10

7.2.1 Grid Generation..10

7.2.2 Solver ...10

7.2.3 WFC ...11

7.3 Designer Interaction ..11

7.4 Results ...12

8. Discussion of outcomes ...12

8.1 Evaluating the overall effectiveness of the project ..12

8.2 How well does the project respond to the research questions? ..13

9. Conclusion and recommendations ..14

10. References ..14

Appendix A: Assets used in the Project ..16

2021/22

3

Alexander Hillman 19021645

Abstract

The WaveFunctionCollapse (WFC) algorithm is an example driven generation algorithm created by Maxim
Gumin (2016) which takes in an input image that demonstrates what tiles can be used and how they

connect to each other. With this information the algorithm then attempts to recreate a similar output

image using the provided data. This project aims to explore how the WFC algorithm could be used to

procedurally generate 3D cityscapes within the Unity game engine. It attempts to recreate the core
functionality from the WFC algorithm and adapt it to create a designer tool to aid in generating

customizable virtual cities. The result from this project is a system which does not use the input image

component of the WFC algorithm and instead combines user-defined tile sets and ruleset as an alternative.

This project details the reasoning behind why the WFC algorithm was chosen, its main features and
functionality, and the product that was created as a result of this research as well as an evaluation of the

final product.

Keywords: Procedural Content Generation, WaveFunctionCollapse (WFC), Socket, Cell, Tile,
Superposition, Entropy.

Biography

This project was chosen due to prior work conducted with the streaming of an open world computer game

level. The level created for the previous project was created using heightmaps and as a result some form

of procedural generation would help to improve the project by adding some variation, this project was

such an attempt. Carrying out such a task allowed for the development of skills in areas such as system

tool creation, it also provided a chance to test a variety of skills in various areas of game development that
had yet to be experienced. This project was further created from a failed prior project of a different

research area, as such procedural content generation was chosen as a different research topic, and this

project was created. Further work created by this author can be found at: https://ahillman2000.github.io/

Accessing the project

The Projects source code can be accessed via: https://github.com/Ahillman2000/Procedural-Generation

under the main project branch. Unity 2021.1.21 is required to run any non-executable versions of this

project.

The video for this project can be found at: https://youtu.be/tduuEkUc3Hk

1. Introduction

Procedural content generation (PCG) is the

process of using algorithmic logic to

automatically create content with limited or

indirect user input, as described by Togelius and
Shaker (2016). Within the video games sector,

such generated content can range from assets

such as textures, meshes or procedural effects to

story content, entire puzzles, levels, or worlds.
These can be generated in such a way that users

may never encounter the same identical content

twice (Smith, 2015).

Games such as Eldrich (Minor Key Games, 2013)

or Minecraft (Mojang, 2011) for example use

procedural content generation for the purpose of

level design. Minecraft for example utilises Perlin
noise to generate the game world in a way that

is both natural feeling and theoretically infinite

(Robertson). Since each world is procedurally

generated players do not know anything about
how the world is setup before they start playing,

they are therefore required to explore the world

for themselves to progress and anything they

discover will be unique and new to that specific

playthrough. By using Perlin noise, the level

design better reflects real world environments to
greater immerse the player in surrounding world.

The features created by procedural generation

play into Minecraft's core goal of discovery and

creativity since players are given near infinite
inspiration.

Image 1: Procedural Generation in games. (Mojang,

2011, Minor Key Games, 2013)

Short and Adams (2017) identify multiple

reasons why procedural content generation may

be used in game design.
- It can save time on creating large

amounts of content compared to a more

manual approach.
- It adds replayability since one generator

can produce many similar but varied

https://ahillman2000.github.io/
https://ahillman2000.github.io/
https://github.com/Ahillman2000/Procedural-Generation
https://youtu.be/tduuEkUc3Hk

2021/22

4

Alexander Hillman 19021645

instances of content, which in turn allows

designers to offer players different
experiences that feel unique to them.

- It can produce content to a scale that can

be difficult to achieve especially within

small development teams.
These reasons give quantifiable evidence for why

procedural generation is necessary within the

modern-day games industry and how using it can

be a benefit to developers and studios alike.

The project will explore generating the layout

and content for a city-like environment so that

the final product will be a system that can
procedurally generate entire city environments

with relative ease. Procedural content generation

was chosen for this project specifically to

automate the process of creating these
environments so that they can be generated

either before or at runtime and to partially

reduce the workload on designers whilst still

providing some level of control.

The main objectives are:

• To automate content generation by

implementing and adapting the

WaveFunctionCollapse algorithm

• To increase customization and designer

control over how procedural content is

generated

And the key deliverables for this project are:

• A system that can procedurally generate

cities with varying sizes, layouts, and content

• A user interface that either allows for a

designer to specify certain conditions or to

place objects that affect how content is

generated

2. Literature review

Kelly and McCabe (2006) have detailed several

procedural techniques for generating content,
these methods include using Fractals, Perlin

noise, Voronoi Diagrams and L systems. By using

this paper as a starting point, many other

methods were found that could be used for
procedural content generation, however for this

project three main approaches were identified

that had the most potential.

2.1 L-systems

CityEngine by Parish and Muller (2001) utilizes

an L-system based approach to model cities
through generating buildings as well as the road

networks needed to support them. The system

takes image maps as input to generate highways
and streets, it then creates lots of land from the

generated road networks and then fills these lots

in with geometry. The L-system operates by

recursively rewriting mechanisms based off a set
of production rules which often leads to the

creation of a fractal like structure (Santel, 2019).

An L-system approach was chosen for this

system because of their branching nature that
allowed for a main road to be generated which

could then diverge off into smaller, more local

sub-road networks in a natural way.

The CityEngine system then uses a population

density image to determine the distribution of

the population to create highways from one

population dense area to another, from here
streets are then grown following a street pattern

until an area with no population is reached. From

the generated road network, the system has

divided the area into areas called blocks which
can then be subdivided into lots through

recursive division of the longest edges of the

block.

Image 3: CityEngine’s approach to block and lot

division. (Parish and Muller, 2001)

This implementation by Parish and Muller (2001)

seems to be able to generate different city
layouts using different patterns allowing for

variation even within a single generation. The

resulting layout appears to be very realistic in

nature since the system can use real-world
geographical data as input, with a variation in

building height and appearance which are also

created through procedural generation.

2.2 Voronoi Diagrams

Another potential method would be the use of

Voronoi diagrams, these can be used to partition

a given space into cells by randomly placing site
points on a Euclidean plane and then generating

cells around each of these sites so that the

region of the plane is closer to that site point

than any others (University of Bristol).

This method is used by Sun et al. (2002), most

notably to produce a population-based template

model for generating non-structured virtual
cities. A Voronoi diagram was used since the it

better reflects the relationship between

population dense areas and the road networks

needed to support them. Sites are generated
from a population density map and the spaces

2021/22

5

Alexander Hillman 19021645

between them are partitioned to generate cells.

These cells then become districts of land to
support buildings and infrastructure and the

edges between each of the generated districts

become sections of the overall road network.

Larger generated cells result in longer roads to
bisect them from others, reflecting the need for a

stronger road to support larger areas with a

greater populous.

Image 4: Frequently used road patterns as

identified by Sun et al. (2002), the most notable
being the population-based pattern that produces a

non-structured pattern.

This paper presented a reasonable methodology
to create non-raster layouts so that parcels of

land could be non-uniformly sized, it also allows

for curved roads to be generated using the

Minkowski distance as shown by Galindo-Torres
(2010). It also appears to have some level of

designer interaction with the ability to colour the

input image to alter aspects such as land-sea

boundaries or population density. However, the
paper has a heavy focus on road networks with

little information on how the generated parcels of

land are populated.

2.3 WaveFunctionCollapse (WFC)
The WFC algorithm (2016) is an example-driven

generation algorithm that produces outputs
which are locally similar to a given sample input

image. Most Notably, the algorithm has been

implemented in games such as Bad North (Raw

Fury), TownScaper (Raw Fury) and Caves of Qud

(Freehold Games, LLC) to name a few.

Image 5: Examples of the WFC algorithm (2016).
The algorithm takes in an example image (left) to

generate a similar output image (right).

Karth and Smith (2017) have summarized the

algorithm down to four key stages:

1. To extract local patterns from the

input image
2. processes the extracted patterns into

an index

3. incrementally generate an output by

eliminating the possible states of
neighbours

4. Generate the final output from the

total assignment

Stage 1 from the above steps can be omitted as

identified by Scholz (2019). Their implementation

instead explicitly identifies the relationship

between tiles through designer-specified
relations rather than inferring them through an

example input image. Scholz’s work attempts to

implement the WFC algorithm to procedurally

generate a 3-dimensional terrain using blocks of
geometry. The system takes a tile set as input

and the matching information is calculated based

on the geometry on each of the sides. This data

is then compared to each of the neighbouring
tiles for the horizonal faces and the grid is

propagated.

Image 6: Model Synthesis in action. A set of input
tiles (a) is used to generate an output model (b)

(Scholz, 2019).

2021/22

6

Alexander Hillman 19021645

Procedural generation using this form of the WFC

algorithm seemed to provide a great deal of
designer interaction with Stålberg’s wave

implementation allowing for users to choose

specific tiles to be placed in spaces. This

methodology also does not need input data
unlike the other two methods researched,

allowing for the designers to interact with the

system itself to alter it.

3. Research questions

• How effective is the WFC algorithm at

creating procedurally generated content?

• Assess the extent to which the WFC

algorithm allows for parameterisation for

designer control.

• How effective is WFC at producing

organic-looking cities?

The main question for this project will aim to

answer how well the chosen algorithm can create

procedural content. This will be evaluated against

Kelly and McCabe’s (2006) criteria to determine

aesthetic factors such as how realistic the

generation is to real-life scenarios, the level of

variation that the system can produce as well as

more technical considerations such as how

computationally complex the system is or how

long it takes to produce an output.

The secondary research question will aim to build

upon the implementation of the algorithm so that

it can be used for more interesting functionality

that it wasn’t originally conceived, such as

allowing for designers to place buildings within

the map before it is solved in a similar way to

that of Stålberg’s Wave implementation. The

reasoning behind this decision is that if this tool

is used by designers, then they will not be

limited to purely random generation and instead

will be able to influence it in a way that suits

their needs or creative ideas.

As well as the two main research questions, a

potential third question may be introduced as a

stretch goal. This question could help to fill in the

gap surrounding the type of content that PCG is

producing, especially concerning procedurally

generated cityscapes. The research conducted

shows that a considerable proportion of the

content being generated is grid based,

resembling a raster pattern (sun et al). This

question would therefore like to investigate if

something more organic could be created using

this algorithm.

4. Research methods

To answer the research questions identified

above, primary quantitative study was
conducted. Conducting this form of research was

chosen over qualitative research due to the

technical nature of the project. The focus of this

project was to assess the effectiveness of a
methodology rather than the impact of the final

product on users, which would have required

descriptive and open-ended responses. The

research conducted also allowed for the project
to be evaluated on a technical level and

determine a quantifiable response to how

successful the project was at answering the

proposed research questions.

Kelly and McCabe’s (2006) key criteria to

evaluate generation systems offered a good

range of factors to determine the overall
effectiveness of the final product:

1. Realism – Does the generated city look

like a real city?

2. Scale – Is the urban landscape at the

scale of a city?

3. Variation – Can the city generation

system recreate the variation of road

networks and buildings found in real

cities or is the output homogeneous?

4. Input – What is the minimal input data

required to generate basic output and

what input data is required for the best
output?

5. Efficiency – How long does it take to

create the examples shown and on what
hardware are they generated? How

computationally efficient is the

algorithm?

6. Control – Can the user influence city

generation and receive immediate

feedback on their actions? Is there a

tactile intuitive method of control
available or is the control restricted? To

what degree can the user influence the

generation results?

7. Real-time – Can the generated city be

viewed in real-time? Are there any

rendering optimisation techniques

applied to enable real-time exploration?

These criteria offer a chance to analyse the

project from both a technical standpoint (how

well the implementation preforms) as well as a
more subjective one (whether it resembles real

2021/22

7

Alexander Hillman 19021645

life cityscapes). These questions will therefore

require some level of numerical analysis such as
the framerate or memory usage whilst the

project is running as well as more personal

opinions such as how well the final product looks

aesthetically.

5. Ethical and professional principles

The project did not need to worry about any

external ethical considerations concerning data

collection or storage methods due to there being
no outside participants. Since the project was

more focussed on the implementation of a

system rather than its effect on a userbase, no

external testing input was required as this was
outside the projects scope.

Where ethical and professional principles had to

be applied however were during the initial stages
of the project when research and development

took place. The main considerations were related

to intellectual property and copyright issues

concerning the work of others. When conducting
research, it was important to cite the

contribution of others when referring to their

work. Furthermore, any code, algorithms or

functions that were not directly implemented was
also cited within the source code. This ensured

that proper credit was given to avoid plagiarism

or infringement of intellectual property.

6. Research findings

The research conducted identified numerous

possible methods to generate procedural

cityscapes. The work of parish and Muller (2001)

and Sun et al. (2002) seemed to rely on multiple

image maps for input. These were used to shape

the way in which cityscapes were generated by

providing the system with data such as the

overall shape of the city using land-water

boundary maps, where structures roughly need

to be using population density images. These

maps allow for designers to be able to alter the

way in which content is generated externally

from the rest of the system, instead opting to be

done by either scanning in pre-existing 2D

images or by creating them with drawing tools.

This method of designer interaction lacks any

form of personal interaction with the system,

users do not see how their actions will impact the

final product since the way in which this is done

has been abstracted from the generating system.

With the lack of designer intimacy with these

systems in mind, the project decided to better

engage designers by integrating them with the

process more and allowing them to immediately

see the results of their design choices. This was

furthered by Stålberg’s Wave implementation

(Stålberg, O) which allows users to not only

select the tiles that they want to use but also to

specify the tile of a chosen cell. As such, the use

of input images to control how content was

generated was abandoned for an alternative

method.

Image 7: WFC implemented by Oskar Stålberg.

Out of the possible methodologies discovered,

the use of Voronoi diagrams and the WFC

algorithm showed the most merit. These did not

rely on external data to be included and seemed

the most interesting to implement. One benefit of
using Voronoi Diagrams would be that the final

product would be less structured in appearance

due to the formation of irregular parcels of land

which in turn would create a shape that looks
very organic. More research revealed that using

different distance calculations would result in the

regions being divided differently. The Drawbacks

of using this method however were discovered
after attempting to implement a very simple

implementation of a Voronoi diagram. This

highlighted problems with how edges were

produced, with the edges often looking unnatural
and not quite what the project was looking for,

furthermore since the research discovered

surrounding this method was rather lacking and

vague, there was no clear method of how this
could be used by itself to produce the desired

results. It was not clear how this method could

do more than just produce a 2D texture and how

it could be used to extract out the necessary
information required to identify and generate

either the roads or parcels of land required.

[Voronoi implementation]

Using the WaveFunctionCollpase algorithm

therefore showed the most promise for this

project after eliminating the other researched
methods. WFC seemed the most fitting

methodology for this task for numerous reasons.

It is a fairly recent implementation and as such is

very current. Because of this, it has a lot of
interest from within the field on top of it being

very versatile and adaptable. Numerous

2021/22

8

Alexander Hillman 19021645

examples were discovered of others that have

attempted to implement this algorithm, either by
attempting it in their own way or by altering it to

suit their needs like the work of Marian42 (2019)

or Donald (2020). It therefore seemed likely that

using this algorithm would not only result in an
interesting product but also be both technically

challenging and generally interesting to

implement. Scholz’s (2019) work was a good

starting example; it demonstrated the possibility
of implementing the algorithm within a 3D

environment without the need for any input

image and could be furthered with designer

customisation.

7. Practice

The project started with a premade 2D tile set

that rigidly followed the original implementation

of the algorithm, it utilised an input example
image and used this to generate an output

(Image 8). It primarily followed a video tutorial

for the code and structure, the result of this was

a better understanding of what the algorithm was
and how it worked. The initial attempt confirmed

that the project needed to move away from the

use of an example input image due to the

overhead of information required to produce it.
The majority of the code was removed since a

different approach was going to be taken but

some structures such as the Direction class

remained as these could be used universally
despite the shift in approach.

Image 8: The first iteration of the WFC system

using an example input image.

The next attempt was closer to the final product,

it again used a much more simplistic tile set. The

aim was to focus on getting the core functionality

of the algorithm working, thus the small set of
tiles that were not complex in design. A tile set of

grass and path sections was chosen, each tile

edge could be one of three possibilities, an edge

could either be grass, a horizontal pathway or a
vertical pathway. Connections such as pathways

could later be simplified to just a single pathway

value if tile prototyping was used, but as a

starting point these were kept separate for ease
of use.

Image 9: The final tile set used for the second

iteration of the system, including the additional tile

pieces.

The initial resulting system did not produce the

correct connections being made. The problem

was caused by the solver propagating out until
there was no impact on adjacent tiles as well as

the limited tile set. The problem was solved by

only doing a single propagation iteration on the

immediate neighbours of the collapsed cell as
well as by increasing the tile set to include

corners and T-junctions on top of the existing

grass, straight pathways and four-way

intersections (Image 9). Making these changes
seemed to solve the problem with incorrectly

solving the grid (Image 10).

Image 10: A fully collapsed grid using a grass and

pathway-based tile set.

This then resulted in the code structure that the

final implementation iterated upon to be created.

The final system implemented its own version of
the key WFC stages which can be broken down

into two main parts.

7.1 Editor Component
The first part to the system is the editor aspect,

this is where designers create the tiles to be

2021/22

9

Alexander Hillman 19021645

included in the final product and specify key

details about how the algorithm should operate.

7.1.1 Tile set
The core component of the WFC algorithm are
the tiles which are joined together to form the

overall cityscape. Each tile is converted into one

of Unity’s prefab objects. The prefabs are

constructed from assets such as road or sidewalk
tiles as well as buildings that are then placed

onto the sidewalk assets (Image 12). Each

prefab then has a custom script attached to it

that specifies information about said tile (Image
11).

Image 11: The second iteration of the tile set used

by the system to better reflect the cityscape goal of

the project.

This information includes detail about each of the
tile’s sockets (edge connectors) as well as

determining which of the created prefabs can

connect to each of these sockets. For the current

setup the sockets can be assigned as either
sidewalk, road vertical or road horizontal,

however if more connections are needed then

they must be added to the enumeration that

stores each of these values.

Image 12: The second iteration tile set used by the

system to better reflect the cityscape goal of the

project.

The tile set used is identical to that used by the

initial pathway implementation, it covers almost

all necessary scenarios except dead ends (Image

12). These then form the basis of system by

which to be placed next to each other to form the

overall cityscape. Each tile prefab is then added

to a scriptable object that stores a list all the

prefabs used so that they can be easily accessed

and altered if needed.

7.1.2 Tile connections

Attached to the Tile script is an editor script

button that checks each of the tiles against the

others in the tile set. When the button is pressed

it ensures that any changes made to the prefab
are saved to the project so that these changes

are not lost between sessions, sets the valid

neighbours for the tiles and then records that a

modification has taken place so that it can be
undone if necessary (Image 13).

2021/22

10

Alexander Hillman 19021645

Image 13: Setting the valid neighbours of a tile

prefab.

The script sets the valid neighbouring tiles

checking the value of each of the four directional

sockets against the opposite socket of each of
the tiles in the scriptable object. If the two

values are identical then the tile gets added to a

list of valid neighbours in that direction. The

result is four directional lists of tiles that can slot
next to this tile in the given direction. By doing

this to each of the tiles in the set, it is possible to

determine all the possible connections for the

given tile set.

7.2 Executable Component
The second part of the system occurs when the
program is run. This is where the majority of the

WFC algorithm is implemented and executed and

is where the finalised cityscape layout and mesh

is generated.

7.2.1 Grid Generation

The Grid Generator script handles the

initialisation of the environment to be solved. It
generates a grid of values to position each of the

cells in a square layout.

Image 14: Each cell’s position indicated by a

sphere.

Each Cell then stores information pertaining to a

position within a grid, this includes information
such as the cells index within the grid, its world

positioning as well as the list of possible tiles that

the cell could be, whether the cell has been

collapsed (had its possible tile set reduced down
to a single tile), and when it gets collapsed, the

tile that the cell has been set to (Image 15).

Image 15: An element in the Grid list denoting a

cell.

When each Cell is created, it is parented to a

main game object which acts as a container for
everything created by the WFC system. The cell

is then instantiated with the related information

and is added to a list of Cells which then forms

the grid. The attached Grid Generator script
contains the function to find which cell within the

grid has the lowest entropy (number of possible

tiles).

7.2.2 Solver

The role of the Solver is to assign a tile to each

of the cells in the grid. This is done by either
selecting the cell with the lowest entropy, or if

one cannot be found then a cell is chosen at

random. The chosen cell is collapsed to a single

tile by randomly removing each of the possible
tiles until only one remains. Once the cell is fully

collapsed the cell instantiates the tile as a game

object and it notifies the solver that a cell has

collapsed. The solver keeps track of the total
number of cells that have been fully collapsed so

that it only iterates whilst there are still non-

collapsed cells remaining, once this is no longer

the case the solver can be assured that it has
fully solved the grid and that it no longer needs

to continue.

The next step for the solver is to propagate out

these changes to the neighbouring tiles. Since
the cells are stored in list, the first step is to

check which of the directions are valid and

contain a cell since checking a cell located on the

2021/22

11

Alexander Hillman 19021645

edge in each of the four directions can result in a

null reference since it checks for cell with an
index value outside the range of the list of cells.

The check returns a list of valid neighbours,

containing information such as the neighbouring

cell and which direction it neighbours the given
cell.

With the neighbouring cells found, the solver

then iterates through each of these neighbours.
It iterates through each of possible tiles for the

neighbour cell, checks these against the valid

neighbour list for this cell. Ff the possible tile

cannot be found within the list of valid
neighbours then it is removed since it will not

correctly match this tile (Image 16).

Image 16: An element in the Grid list denoting a

cell.

Once the cell has propagated it changes out to its

neighbours, the solver then selects a new tile to
collapse, and the process repeats until all the

cells in the grid have fully collapsed.

7.2.3 WFC

The WFC object incorporates the above stages

into a single entity, this then allows for the

necessary functions to be centrally located, these
are split up so that the generator and solver can

be run independently from each other or one

after the other from one function call.

7.3 Designer Interaction

During runtime, the user can alter key features

of the system to change how content is

generated. The first is the size of the grid, this
ranges from grid sizes of 2x2 up to 20x20 so that

different sized cities can be generated. This also

means that bigger grid sizes result in more

complex cityscapes as they are composed of a
greater number of pieces and therefore have a

greater chance to vary in pieces as well as

layout.

Taking inspiration from Stålberg’s

implementation, the algorithm depicts the
possible tile set of each of the cells which can

either be used for a visual aid to demonstrate

what happens within each iteration as well the

impact this has on a cell’s neighbouring tiles. The
system also allows for users to select a tile for all

the cells within the grid so that each cell can be

specified. This is done through the use of a tile

selection script. When the user clicks on a tile the
script projects a raycast towards it, it then

converts the world coordinates of the hit point,

converts the position to a cell index to determine

the targeted cell and then assigns the hit cell to
the selected tile. The result is that users can

actively alter the way in which the grid is solved

by selecting the chosen tiles into the grid and

then allowing the system to solve the remaining
cells with consideration of the users input (Image

17).

Image 17: The centre cell collapsed by the user and

the impact of this decision on the neighbouring cells’

possible tile sets.

Demonstrating each cell’s possible tile set is

combined with the use of a coroutine to execute

the solver component of the WFC algorithm with
a variable delay, so that users can speed up or

slow down the rate at which the solver solves the

grid. This provides users with the chance to get a

better idea of the steps taken to produce the
final cityscape.

2021/22

12

Alexander Hillman 19021645

7.4 Results

Image 18: A procedurally generated cityscape

created with this project’s variation of the

WaveFunctionCollapse algorithm.

The final resulting system, implemented within

the Unity game engine, is one that procedurally

generates a 3-dimensional cityscape by using a
set of tile prefabs. Users can alter the system in

a variety of ways that affect how the final output

of the system in ways such as altering the size of

the resulting cityscape or by explicitly assigning
tiles to cells.

This system can however be utilised for a variety

of different circumstances besides that of city
generation due to its tile-based approach. It is

therefore possible for a designer to change the

tile set that is being used to anything they

desire. The system initially started out with a
grass and path-based tile set with which was

then swapped for the final city-based tile set, to

better reflect the main goal for this project.

Because of this flexibility, this system could
theoretically produce vastly different content for

a variety of situations, based off the given input

tile set. One hinderance to this however would be

the need to access some of the scripts as some
functionality such as the values of sockets are

hard coded into the system.

8. Discussion of outcomes

Unlike Karth and Smith’s (2017) findings, this

project did not treat the WFC algorithm as a
metaphorical black box and instead attempted to

fully understand it’s workings so that it could be

altered and implemented in the project’s own

way. The result is a system that, whilst taking
heavy inspiration from the original algorithm, is

not implemented in an identical manner to the

work of Gumin (2016). The project instead

approaches the algorithm in a similar manner to
the work conducted by Donald (2020) and

Mariam42 (2019) in which numerous tiles are

created with the user specifying how they should

connect rather than using an input image to

determine connectivity.

8.1 Evaluating the overall effectiveness of the
project
With Kelly and McCabe’s (2006) criteria in mind,

the overall system is fairly effective at producing

procedurally generated content.

The realism can be somewhat questionable with

the generated cityscapes at times due to

unrealistic road networks being created. Since

the system chooses valid tiles at random, it does

not consider the value of neighbouring tiles and

as such can generate sections such as in Image

19 where junction tiles have been densely placed

in a local space. One method to solve this lack of

realism could be to introduce a weighting to each

of the tiles to alter the chance of each of the tiles

being selected or by adding more varied tile

types.

Image 19: A cityscape containing a dense area of

junctions

The scale can be altered meaning that the size

can be suited to the need for any sized city

needed, however increasing the grid size can

cause framerate issues due to the processing

power needed to generate the larger structures

and to render all the meshes for each of the tiles.

This problem could be mitigated by taking a

similar approach to that of Sunset Overdrive

(Insomniac Games, 2014). Elan Ruskin (2015)

presents the way in which the game optimised

the world for streaming. Each chunk could be

streamed in so that the system is not rendering

the entire map at once or alternatively a level of

2021/22

13

Alexander Hillman 19021645

detail system could be used to reduce the vertex

count of meshes that are less important, both of

which would help to reduce the number of draw

calls the system must make.

The system can generate a variety of layouts for

the cityscape which can be further increased by

adding to the possible tile set, the level of

variation of the system can therefore be chosen

by the designer with the number of tiles that

they provide the system. The minimum input

data required to maintain the system is a tile set

and the ruleset of how these tiles connect. The

system can generate smaller grids with relative

ease and speed with larger grids taking longer to

generate due to the increase in tiles needed to

be solved and drawn to screen.

Designer control was a core focus through the

project's development since this was the best

way to test the extent to which the algorithm

could be altered as well as generally creating a

system that gives a lot of control over how it

operates to designers to be tailored to their

needs. As such, the system allows for multiple

ways in which to influence the content

generated. Tile sets can be swapped out produce

different aesthetics and users are able to

manually place tiles that will still adhere to

connectivity logic. Alongside being able to alter

the scale, these were the main features that the

implementation intended to have throughout the

project that allows for customisation and

alteration.

The generated city can be viewed in real-time,

but this is limited to the entire thing being

generated at once, unlike Scholz’s (2019) or

Mariam42’s (2019) implementation, the system

does not allow for infinite generation. This could

have been achieved by using a chunk-based

system that considers the edges of the

connecting tiles, the initial problem with

attempting this is that WFC is aimed at constraint

solving which would be hindered by infinite

generation. The same optimisations that would

benefit the variable scale would also help to solve

the issues to allow for real-time infinite

generation,

After considering these points, the overall WFC

system is effective at producing procedurally

generated content but has room for

improvement, it successfully meets the design

criteria for a successful system but only just, if

the suggested improvements were made then

the system would better meet the criteria and

could be made more effective.

The project was unable to implement tile

prototyping, and as such the way tiles are
created could have been simplified and more

efficiently handled. The lack of prototyping

resulted in overhead data being needed. Tiles

that were conceptually the same but with a
different rotation required a completely new tile

being created, the horizontal and vertical road

pieces for example are identical if appearance

and logic but have a rotation difference of 90-
degrees. If the project were able to implement

tile prototyping, then any duplicated tiles could

be grouped into a single core tile with some

variable difference (I.e., different rotations).
Prototyping would involves capturing the core

data of the tile needed to be able to recreate it

such as its rotation, the data from each of its

sockets and the mesh data. Since each tile was
composed of more than one single asset, a

problem arose with trying to replicate the tiles

mesh data since there was no one single mesh

file to load from. As such, prototyping was not
implemented in the final project.

8.2 How well does the project respond to the
research questions?
The product created as a result of this project

demonstrates that the WFC algorithm is effective
at producing procedurally generated content.

Throughout production the project implemented

two versions of the algorithm, once with an

example input image and one without, both of
which were able to produce distinctively different

content in terms of appearance and layout.

Analysed against a set of criteria, this form of

procedural generation excels in some areas such

as in variation or control but is lacking in other
areas such as its limitations with real-time

generation or the scale of the generated content,

this may however be a result of the

implementation rather than the actual algorithm
since the project does not recreate the algorithm

perfectly.

This implementation also demonstrates that
whilst WFC can allow for some form of

parameterisation, this is limited and as such the

project did not really become the tool that it was

intended to become, which is only furthered by
the fact that most of the system runs at runtime

due to the need for project to be an executable

build for demonstration purposes. The algorithm

alone does not allow for much customisation, or
at least not in the way that this project

implemented it, as such the system would

benefit from further development to provide

additional system on top of those already created
that would, when put together, allow for in depth

customisation for a range of customisation.

Additional tools such as being able to classify

regions with a specific label such as commercial,

2021/22

14

Alexander Hillman 19021645

industrial or residential would allow designers to

further specify the type of tiles that must be
placed within a certain area and provide a more

realistic portrayal of building diversity and

distribution. Another such potential improvement

may be to focus on the 3-dimension aspect more
since this project only really covered a 2-

dimensional grid, by introducing a 3d grid the

system could make use of sloped tiles to allow

for changes in height to resemble non-level
ground such as that found in San Fransisco,

America which can be heavily sloped in some

areas.

Whilst research conducted has shown that it is

possible, this project failed to answer whether

the algorithm can produce organic-looking

cityscapes since the final content generated was
more structured. This was due to the tiles used

by the system as these were square tiles that

used straight pieces, these could be made to look

more organic by either adding more curves to
the content of the tiles to give the appearance of

a more organic feel or this could have been

achieved by changing the shape of the tiles. By

using tiles of a hexagonal design would have
allowed for a larger number of connections and

thus more curves. This was not implemented due

to the system using a square grid pattern that

only used the four cardinal directions, by
transitioning over to hexagonal tiles the system

would require more connection directions which

in turn would require both a new method to place

cells within the grid layout as well as an
alteration to how neighbouring tiles are

calculated. This would require two more

neighbours to be found and the logic of finding

the neighbours would need to be changed to
check in a diagonal direction.

9. Conclusion and recommendations

Hopefully, this project has demonstrated the

power of the WaveFunctionCollapse algorithm
and provided one such possible method to

implementing the algorithm to those looking for

a place to start.

From here, this project would make several

recommendations for future work. One such

recommendation would be to simplify and/or

improve upon the codebase of the project and to
generally improve upon how the core features of

the algorithm are implemented. For example,

since the Tile script is a MonoBehaviour it must

be attached to a game object within the scene.
This caused significant problems during the

production stage when attempting to get the tile

component of a neighbouring cell that had yet to

be instantiated. The project was also unable to
determine a possible method for allowing a user

to create their own list of socket values for the

enumeration which results in them having to
access scripts which could be troublesome.

Improving upon the areas in which the project

was unable to meet would improve the tool to be

more user friendly for designers and overall allow
for a wider range of implementations. By finding

a more efficient method of implementing the core

features of this system would also lead to more

features being integrated as an overall benefit.

Overall, the project spent more time than it

should have in the initial practical stages since

the research conducted failed to identify the
necessary steps needed to be taken to

implement the algorithm. However, this system

could potentially be used by others as a basic

implementation in achieving a procedural layout
of tiles or act as a rough guide to those looking

for the steps needed to be taken to achieve a

similar outcome to that of this project.

10. References

Donald, M., (2020) Superpositions, Sudoku, the
Wave Function Collapse algorithm. Available

from:

https://www.youtube.com/watch?v=2SuvO4Gi7u

Y

Freehold Games, LLC (2015) Caves of Qud.

[Video Game] Freehold Games, LLC. Available

from: https://www.cavesofqud.com/

Galindo-Torres, s., and Muñoz, J. (2010)

Minkowski-Voronoi diagrams as a method to

generate random packings of spheropolygons for
the simulation of soils. Physical Review [online]

82 (5). Available from:

https://journals.aps.org/pre/abstract/10.1103/Ph

ysRevE.82.056713#fulltext

Gumin, M. (2016) Wave Function Collapse

Algorithm. Available from:

https://github.com/mxgmn/WaveFunctionCollaps
e

Insomniac Games (2014) Sunset Overdrive.

[Video Game] Xbox Game Studios. Available
from: https://insomniac.games/game/sunset-

overdrive/

Karth, I. and Smith, A.M. (2017)
Wavefunctioncollapse Is Constraint Solving in the

Wild. FDG '17: Proceedings of the 12th

International Conference on the Foundations of

Digital Games [online]. Available from:
https://adamsmith.as/papers/wfc_is_constraint_

solving_in_the_wild.pdf

Kelly, G. and McCabe, H. (2006) A Survey of
Procedural Techniques for City Generation. The

https://www.youtube.com/watch?v=2SuvO4Gi7uY
https://www.youtube.com/watch?v=2SuvO4Gi7uY
https://www.cavesofqud.com/
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://insomniac.games/game/sunset-overdrive/
https://insomniac.games/game/sunset-overdrive/
https://adamsmith.as/papers/wfc_is_constraint_solving_in_the_wild.pdf
https://adamsmith.as/papers/wfc_is_constraint_solving_in_the_wild.pdf

2021/22

15

Alexander Hillman 19021645

ITB Journal [online]. 7 (2) Available from:

https://arrow.tudublin.ie/itbj/vol7/iss2/5

Marian42 (2019) Infinite procedurally generated

city with the Wave Function Collapse algorithm.

Available from: https://marian42.de/article/wfc/

Minor Key Games (2013) Eldritch. [Video Game].

Minor Key Games Available from:

https://eldritchgame.com/

Mojang studios (2011) Minecraft. [Video Game].

Mojang studios. Available from:

https://www.minecraft.net/en-us

Parish, Y.I.H. and Müller, P. (2001) Procedural

Modelling of Cities. SIGGRAPH '01: Proceedings

of the 28th Annual Conference on Computer
Graphics and Interactive Techniques [online].

Available from:

https://dl.acm.org/doi/pdf/10.1145/383259.383

292

Raw Fury (2018) Bad North. [Video Game] Raw

Fury. Available from:

https://www.badnorth.com/

Robertson, H., (2018) Procedural Regeneration:

Matching the World to the Player. Game

Developers Conference 2018. [online] Available
from:

https://www.youtube.com/watch?v=rf4VaRldwO

Y

Ruskin, E., (2015) Streaming in Sunset

Overdrive's Open World. Game Developers

Conference 2015. [online] Available from:

https://www.gdcvault.com/play/1022268/Stream
ing-in-Sunset-Overdrive-s

Santell, J (2019) L-systems. Available from:

https://jsantell.com/l-systems/

Scholz, D (2019) Tile-Based Procedural Terrain

Generation. Bachelor of Science, Vienna

University of Technology. Available from:
https://www.cg.tuwien.ac.at/research/publicatio

ns/2019/scholz_2017_bac/scholz_2017_bac-

thesis.pdf

Short, T. and Adams, T. (2017) Procedural

Generation in Game Design [online]. Taylor &

Francis Group, LLC. (pgs. 9-12)

Smith, G. (2015) An Analog History of Procedural

Content Generation. Foundations of Digital

Games. 2015. Available from:

http://www.fdg2015.org/papers/fdg2015_paper_
19.pdf

Stålberg, O.

https://oskarstalberg.com/game/wave/wave.htm
l

Stålberg, O., (2020) Townscaper. [Video Game]

Raw Fury. Available from:
https://www.townscapergame.com/

Sun, J., Yu, X. and Baciu, G. (2002) Template-

based Generation of Road Networks for Virtual
City Modelling. VRST '02: Proceedings of the ACM

Symposium on Virtual Reality Software and

Technology [online]. Available from:

https://dl.acm.org/doi/pdf/10.1145/585740.585
747

Togelius, J. and Shaker, N. (2016) Procedural

Content Generation in Games. Computational
Synthesis and Creative Systems [online].

Springer, Cham. Available from: https://link-

springer-

com.ezproxy.uwe.ac.uk/chapter/10.1007/978-3-
319-42716-4_1

University of Bristol, School of Mathematics.

What is a Voronoi diagram? Available from:
https://www.bristol.ac.uk/maths/fry-

building/public-art-strategy/what-is-a-voronoi-

diagram/

 11. Bibliography

Bucklew, B., (2019) Math for Game Developers:

Tile-Based Map Generation using Wave Function

Collapse in 'Caves of Qud'. Game Developers

Conference 2019 [online]. Available from:
https://www.gdcvault.com/play/1026263/Math-

for-Game-Developers-Tile

DigiDigger. (2020) How does procedural
generation work? | Bitwise. Available from:

https://www.youtube.com/watch?v=-POwgollFeY

Emilien, A., Bernhardt, A., Peytavie, A., Cani,
AP., Galine, E. (2012) Procedural generation of

villages on arbitrary terrains. The Visual

Computer. 28. [online] Available from:

https://link.springer.com/article/10.1007/s00371
-012-0699-7

Freiknecht, J., Effelsberg, W., (2017) A Survey

on the Procedural Generation of Virtual Worlds.
Multimodal Technology. 1(4). [online] Available

from: https://www.mdpi.com/2414-

4088/1/4/27/html

Gaisbauer, W., Raffe, W.L., Garcia, J.A. and

Hlavacs, H. (2019) Procedural Generation of

Video Game Cities for Specific Video Game

Genres Using WaveFunctionCollapse (WFC). CHI
PLAY '19 Extended Abstracts: Extended Abstracts

of the Annual Symposium on Computer-human

https://arrow.tudublin.ie/itbj/vol7/iss2/5
https://marian42.de/article/wfc/
https://eldritchgame.com/
https://www.minecraft.net/en-us
https://dl.acm.org/doi/pdf/10.1145/383259.383292
https://dl.acm.org/doi/pdf/10.1145/383259.383292
https://www.badnorth.com/
https://www.youtube.com/watch?v=rf4VaRldwOY
https://www.youtube.com/watch?v=rf4VaRldwOY
https://www.gdcvault.com/play/1022268/Streaming-in-Sunset-Overdrive-s
https://www.gdcvault.com/play/1022268/Streaming-in-Sunset-Overdrive-s
https://jsantell.com/l-systems/
https://www.cg.tuwien.ac.at/research/publications/2019/scholz_2017_bac/scholz_2017_bac-thesis.pdf
https://www.cg.tuwien.ac.at/research/publications/2019/scholz_2017_bac/scholz_2017_bac-thesis.pdf
https://www.cg.tuwien.ac.at/research/publications/2019/scholz_2017_bac/scholz_2017_bac-thesis.pdf
http://www.fdg2015.org/papers/fdg2015_paper_19.pdf
http://www.fdg2015.org/papers/fdg2015_paper_19.pdf
https://oskarstalberg.com/game/wave/wave.html
https://oskarstalberg.com/game/wave/wave.html
https://www.townscapergame.com/
https://dl.acm.org/doi/pdf/10.1145/585740.585747
https://dl.acm.org/doi/pdf/10.1145/585740.585747
https://link-springer-com.ezproxy.uwe.ac.uk/chapter/10.1007/978-3-319-42716-4_1
https://link-springer-com.ezproxy.uwe.ac.uk/chapter/10.1007/978-3-319-42716-4_1
https://link-springer-com.ezproxy.uwe.ac.uk/chapter/10.1007/978-3-319-42716-4_1
https://link-springer-com.ezproxy.uwe.ac.uk/chapter/10.1007/978-3-319-42716-4_1
https://www.bristol.ac.uk/maths/fry-building/public-art-strategy/what-is-a-voronoi-diagram/
https://www.bristol.ac.uk/maths/fry-building/public-art-strategy/what-is-a-voronoi-diagram/
https://www.bristol.ac.uk/maths/fry-building/public-art-strategy/what-is-a-voronoi-diagram/
https://www.gdcvault.com/play/1026263/Math-for-Game-Developers-Tile
https://www.gdcvault.com/play/1026263/Math-for-Game-Developers-Tile
https://www.youtube.com/watch?v=-POwgollFeY
https://link.springer.com/article/10.1007/s00371-012-0699-7
https://link.springer.com/article/10.1007/s00371-012-0699-7
https://www.mdpi.com/2414-4088/1/4/27/html
https://www.mdpi.com/2414-4088/1/4/27/html

2021/22

16

Alexander Hillman 19021645

Interaction in Play Companion Extended

Abstracts [online]. p. 397–404. Available from:
https://dl-acm-

org.ezproxy.uwe.ac.uk/doi/10.1145/3341215.33

56255

Hendrikx, M., Meijer, S., Van Der Velden, J.,

losup, A. Procedural content generation for

games: A survey. ACM Transactions on

Multimedia Computing, Communications, and
Applications. 9(1). Available from:

https://dl.acm.org/doi/pdf/10.1145/2422956.24

22957

Pittman, D. Procedural Level Design in Eldritch.

Game Developers Conference 2015. [online]

available from:

https://www.youtube.com/watch?v=BYN0PJOdvz

s

Sharma, R. Procedural City Generator. 2016

International Conference System Modeling &

Advancement in Research Trends (SMART).
https://ieeexplore.ieee.org/abstract/document/7

894522

Smith, G. (2014) Understanding procedural
content generation: a design-centric analysis of

the role of PCG in games. CHI '14: Proceedings

of the SIGCHI Conference on Human Factors in

Computing Systems. [online] Available from:
https://dl.acm.org/doi/abs/10.1145/2556288.25

57341

Appendix A: Assets used in the Project
POLYGON City - Low Poly 3D Art by Synty – Available from:

https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-low-poly-3d-art-by-synty-

95214#description

https://dl-acm-org.ezproxy.uwe.ac.uk/doi/10.1145/3341215.3356255
https://dl-acm-org.ezproxy.uwe.ac.uk/doi/10.1145/3341215.3356255
https://dl-acm-org.ezproxy.uwe.ac.uk/doi/10.1145/3341215.3356255
https://dl.acm.org/doi/pdf/10.1145/2422956.2422957
https://dl.acm.org/doi/pdf/10.1145/2422956.2422957
https://www.youtube.com/watch?v=BYN0PJOdvzs
https://www.youtube.com/watch?v=BYN0PJOdvzs
https://ieeexplore.ieee.org/abstract/document/7894522
https://ieeexplore.ieee.org/abstract/document/7894522
https://dl.acm.org/doi/abs/10.1145/2556288.2557341
https://dl.acm.org/doi/abs/10.1145/2556288.2557341
https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-low-poly-3d-art-by-synty-95214#description
https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-low-poly-3d-art-by-synty-95214#description

	Abstract
	1. Introduction
	2. Literature review
	2.1 L-systems
	2.2 Voronoi Diagrams
	2.3 WaveFunctionCollapse (WFC)

	3. Research questions
	4. Research methods
	5. Ethical and professional principles
	6. Research findings
	7. Practice
	7.1 Editor Component
	7.1.1 Tile set
	7.1.2 Tile connections

	7.2 Executable Component
	7.2.1 Grid Generation
	7.2.2 Solver
	7.2.3 WFC

	7.3 Designer Interaction
	7.4 Results

	8. Discussion of outcomes
	8.1 Evaluating the overall effectiveness of the project
	8.2 How well does the project respond to the research questions?

	9. Conclusion and recommendations
	10. References
	Appendix A: Assets used in the Project

